Grade 4 Math - Eligible Content

M04.A-T.1.1 Apply place-value and numeration concepts to compare, find equivalencies, and round.

- Demonstrate an understanding that in a multi-digit whole number (through $1,000,000$), a digit in one place represents ten times what it represents in the place to its right. Example: Recognize that in the number 770, the 7 in the hundreds place is ten times the 7 in the tens place.
- Read and write whole numbers in expanded, standard, and word form through 1,000,000.
- Compare two multi-digit numbers through $1,000,000$ based on meanings of the digits in each place, using $>$, $=$, and $<$ symbols.
- Round multi-digit whole numbers (through $1,000,000$) to any place.

M04.A-T.2.1 Use operations to solve problems.

- Add and subtract multi-digit whole numbers (limit sums and subtrahends up to and including $1,000,000$). [Spitici
- Multiply a whole number of up to four digits by a one-digit whole number and multiply 2 two-digit numbers.
- Divide up to four-digit dividends by one-digit divisors with answers written as whole-number quotients and remainders.
- Estimate the answer to addition, subtraction, and multiplication problems using whole numbers through six digits (for multiplication, no more than 2 digits $\times 1$ digit, excluding powers of 10).

M04.A-F.1.1 Find equivalencies and compare fractions.

- Recognize and generate equivalent fractions.
- Compare two fractions with different numerators and different denominators (denominators limited to $2,3,4$, $5,6,8,10,12$, and 100) using the symbols $>,=$, or $<$ and justify the conclusions.

M04.A-F.2.1 Solve problems involving fractions and whole numbers (straight computation or word problems).

- Add and subtract fractions with a common denominator (denominators limited to $2,3,4,5,6,8,10,12$, and 100; answers do not need to be simplified; and no improper fractions as the final answer).
- Decompose a fraction or a mixed number into a sum of fractions with the same denominator (denominators limited to $2,3,4,5,6,8,10,12$, and 100), recording the decomposition by an equation. Justify decompositions (e.g., by using a visual fraction model). Example $1: 3 / 8=1 / 8+1 / 8+1 / 8$ OR $3 / 8=1 / 8+2 / 8$ Example 2: $21 / 12=1+1+1 / 12=12 / 12+12 / 12+1 / 12$
- Add and subtract mixed numbers with a common denominator (denominators limited to $2,3,4,5,6,8,10,12$, and 100; no regrouping with subtraction; fractions do not need to be simplified; and no improper fractions as the final answers).
- Solve word problems involving addition and subtraction of fractions referring to the same whole or set and having like denominators (denominators limited to $2,3,4,5,6,8,10,12$, and 100).
- Multiply a whole number by a unit fraction (denominators limited to $2,3,4,5,6,8,10,12$, and 100 and final answers do not need to be simplified or written as a mixed number). Example: $5 \times(1 / 4)=5 / 4$
- Multiply a whole number by a non-unit fraction (denominators limited to $2,3,4,5,6,8,10,12$, and 100 and final answers do not need to be simplified or written as a mixed number). Example: $3 \times(5 / 6)=15 / 6$
- Solve word problems involving multiplication of a whole number by a fraction (denominators limited to 2,3 , $4,5,6,8,10,12$, and 100).

M04.A-F.3.1 Use operations to solve problems involving decimals, including converting between fractions and decimals (may include word problems).

- Add two fractions with respective denominators 10 and 100. Example: Express $3 / 10$ as $30 / 100$, and add $3 / 10$ $+4 / 100=30 / 100+4 / 100=34 / 100$.
- Use decimal notation for fractions with denominators 10 or 100. Example: Rewrite 0.62 as $62 / 100$ and vice versa.
- Compare two decimals to hundredths using the symbols $>$, $=$, or $<$, and justify the conclusions

M04.B-O.1.1 Use numbers and symbols to model the concepts of expressions and equations.

- Interpret a multiplication equation as a comparison. Represent verbal statements of multiplicative comparisons as multiplication equations. Example 1: Interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Example 2: Know that the statement 24 is 3 times as many as 8 can be represented by the equation $24=3 \times 8$ or $24=8 \times 3$.
- Multiply or divide to solve word problems involving multiplicative comparison, distinguishing multiplicative comparison from additive comparison. Example: Know that 3×4 can be used to represent that Student A has 4 objects and Student B has 3 times as many objects not just 3 more objects.

Continued on next page

- Solve multi-step word problems posed with whole numbers using the four operations. Answers will be either whole numbers or have remainders that must be interpreted yielding a final answer that is a whole number. Represent these problems using equations with a symbol or letter standing for the unknown quantity.
- Identify the missing symbol (,,$+- \times, \div,=,<$, and $>$) that makes a number sentence true (single-digit divisor only).

Grade 4 Math - Eligible Content

M04.B-O.2.1 Develop and apply number theory concepts to represent numbers in various ways.

- Find all factor pairs for a whole number in the interval 1 through 100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the interval 1 through 100 is a multiple of a given one digit number. Determine whether a given whole number in the interval 1 through 100 is prime or composite.

M04.B-O.3.1 Recognize, describe, extend, create, and replicate a variety of patterns.

- Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. Example 1: Given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms alternate between odd and even numbers. Example 2: Given the rule "increase the number of sides by 1 " and starting with a triangle, observe that the tops of the shapes alternate between a side and a vertex.
- Determine the missing elements in a function table (limit to,+- , or \times and to whole numbers or money).
- Determine the rule for a function given a table (limit to,+- , or \times and to whole numbers).

M04.C-G.1.1 List properties, classify, draw, and identify geometric figures in two dimensions.

- Draw points, lines, line segments, rays, angles (right, acute, and obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
- Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.
- Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into mirroring parts. Identify line-symmetric figures and draw lines of symmetry (up to two lines of symmetry).

M04.C-G.1.1 List properties, classify, draw, and identify geometric figures in two dimensions.

- Draw points, lines, line segments, raise angles (right, acute, and obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
- Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size. Recognize right triangles as a category and identify right triangles.
- Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into mirroring parts. Identify line-symmetric figures and draw lines of symmetry (up to two lines of symmetry).

M04.D-M.1.1 Solve problems involving length, weight (mass), liquid volume, time, area, and perimeter.

- Know relative sizes of measurement units within one system of units including standard units (in., $\mathrm{ft}, \mathrm{yd}, \mathrm{mi}$; oz., lb; and c, pt, qt, gal), metric units (cm, m, km; g, kg; and mL, L), and time ($\mathrm{sec}, \mathrm{min}$, hr, day, wk, mo, and yr). Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. A table of equivalencies will be provided. Example 1 : Know that 1 kg is 1,000 times as heavy as 1 g . Example 2: Express the length of a 4-foot snake as 48 in.
- Use the four operations to solve word problems involving distances, intervals of time (such as elapsed time), liquid volumes, masses of objects; money, including problems involving simple fractions or decimals; and problems that require expressing measurements given in a larger unit in terms of a smaller unit.
- Apply the area and perimeter formulas for rectangles in real-world and mathematical problems (may include finding a missing side length). Whole numbers only. The formulas will be provided.
- Identify time (analog or digital) as the amount of minutes before or after the hour. Example 1:2:50 is the same as 10 minutes before 3:00. Example 2: Quarter past six is the same as 6:15.

M04.D-M.2.1 Organize, display, and answer questions based on data.

- Make a line plot to display a data set of measurements in fractions of a unit (e.g., intervals of $1 / 2,1 / 4$, or $1 / 8$).
- Solve problems involving addition and subtraction of fractions by using information presented in line plots (line plots must be labeled with common denominators, such as $1 / 4,2 / 4,3 / 4$).
- Translate information from one type of display to another (table, chart, bar graph, or pictograph).

M04.D-M.3.1 Use appropriate tools and units to sketch an angle and determine angle measurements.

- Measure angles in whole-number degrees using a protractor. With the aid of a protractor, sketch angles of specified measure.
- Solve addition and subtraction problems to find unknown angles on a diagram in real-world and mathematical problems. (Angles must be adjacent and non-overlapping.)

