Grade 5 Math - Eligible Content

M05.A-T.1.1 Demonstrate understanding of place-value of whole numbers and decimals, and compare quantities or magnitudes of numbers.

- Demonstrate an understanding that in a multi-digit number, a digit in one place represents $1 / 10$ of what it represents in the place to its left. Example: Recognize that in the number 770 , the 7 in the tens place is $1 / 10$ the 7 in the hundreds place.
- Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10. Example 1: $4 \times 10^{\wedge} 2=400$ Example 2: $0.05 \div 10^{\wedge} 3=0.00005$
- Read and write decimals to thousandths using base-ten numerals, word form, and expanded form. Example: $347.392=300+40+7+0.3+0.09+0.002=3 \times 100+4 \times 10$ $+7 \times 1+3 \times(0.1)+9 \times(0.01)+2 \times(0.001)$
- Compare two decimals to thousandths based on meanings of the digits in each place using $>$, $=$, and < symbols
- Round decimals to any place (limit rounding to ones, tenths, hundredths, or thousandths place).

M05.A-T.2.1 Use whole numbers and decimals to compute accurately (straight computation or word problems).

- Multiply multi-digit whole numbers (not to exceed three-digit by three-digit).
- Find whole-number quotients of whole numbers with up to four-digit dividends and twodigit divisors.
- Add, subtract, multiply, and divide decimals to hundredths (no divisors with decimals).

M05.A-F.1.1 Solve addition and subtraction problems involving fractions (straight computation or word problems).

- Add and subtract fractions (including mixed numbers) with unlike denominators. (May include multiple methods and representations.) Example: $2 / 3+5 / 4=8 / 12+15 / 12=23 / 12$

M05.A-F.2.1 Solve multiplication and division problems involving fractions and whole numbers (straight computation or word problems).

- Solve word problems involving division of whole numbers leading to answers in the form of fractions (including mixed numbers).
- Multiply a fraction (including mixed numbers) by a fraction.
- Demonstrate an understanding of multiplication as scaling (resizing). Example 1: Comparing the size of a product to the size of one factor on the basis of the size of the other factor without performing the indicated multiplication. Example 2: Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number.
- Divide unit fractions by whole numbers and whole numbers by unit fractions.

M05.B-O.1.1 Analyze and complete calculations by applying the order of operations.

- Use multiple grouping symbols (parentheses, brackets, or braces) in numerical expressions and evaluate expressions containing these symbols.
- Write simple expressions that model calculations with numbers and interpret numerical expressions without evaluating them. Example 1: Express the calculation "add 8 and 7, then multiply by 2 " as $2 \times(8+7)$. Example 2 : Recognize that $3 \times(18,932+921)$ is three times as large as $18,932+921$ without having to calculate the indicated sum or product.

Grade 5 Math - Eligible Content

M05.B-O.2.1 Create, extend, and analyze patterns.

- Generate two numerical patterns using two given rules. Example: Given the rule "add 3" and the starting number 0 and given the rule "add 6 " and the starting number 0 , generate terms in the resulting sequences.
- Identify apparent relationships between corresponding terms of two patterns with the same starting numbers that follow different rules. Example: Given two patterns in which the first pattern follows the rule "add 8 " and the second pattern follows the rule "add 2 ," observe that the terms in the first pattern are 4 times the size of the terms in the second pattern.

M05.C-G.1.1 Identify parts of a coordinate grid and describe or interpret points given an

 ordered pair.- Identify parts of the coordinate plane (x-axis, y-axis, and the origin) and the ordered pair (x-coordinate and y-coordinate). Limit the coordinate plane to quadrant I.
- Represent real-world and mathematical problems by plotting points in quadrant I of the coordinate plane and interpret coordinate values of points in the context of the situation.

M05.C-G.2.1 Use basic properties to classify two-dimensional figures.

- Classify two-dimensional figures in a hierarchy based on properties. Example 1: All polygons have at least three sides, and pentagons are polygons, so all pentagons have at least three sides. Example 2: A rectangle is a parallelogram, which is a quadrilateral, which is a polygon; so, a rectangle can be classified as a parallelogram, as a quadrilateral, and as a polygon.

M05.D-M.1.1 Solve problems using simple conversions (may include multistep, real-world problems).

- Convert between different-sized measurement units within a given measurement system. A table of equivalencies will be provided. Example: Convert 5 cm to meters.

M05.D-M.2.1 Organize, display, and answer questions based on data.

- Solve problems involving computation of fractions by using information presented in line plots.
- Display and interpret data shown in tallies, tables, charts, pictographs, bar graphs, and line graphs, and use a title, appropriate scale, and labels. A grid will be provided to display data on bar graphs or line graphs.

M05.D-M.2.1 Organize, display, and answer questions based on data.

- Solve problems involving computation of fractions by using information presented in line plots.
- Display and interpret data shown in tallies, tables, charts, pictographs, bar graphs, and line graphs, and use a title, appropriate scale, and labels. A grid will be provided to display data on bar graphs or line graphs.

M05.D-M.3.1 Use, describe, and develop procedures to solve problems involving volume.

- Apply the formulas $\mathrm{V}=1 \times \mathrm{w} \times \mathrm{h}$ and $\mathrm{V}=\mathrm{B} \times \mathrm{h}$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving realworld and mathematical problems. Formulas will be provided.
- Find volumes of solid figures composed of two non-overlapping right rectangular prisms.

